Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 Received January 23, 1984

Several pyrrolo- and pyrido[1,2-a]indoles were prepared via an intramolecular Wittig reaction in good yields. This reaction sequence represents a facile entry into the mitosene ring system.

J. Heterocyclic Chem., 21, 623 (1984).

The biological activity of the mitomycins (e.g. mitomycin C, 1) and related compounds has caused much attention to the synthesis of the pyrrolo[1,2-a]indole ring system [2-5]. In this communication we report a simple synthesis of this ring system and the 6,7,8,9-tetrahydropyrido[1,2-a]-indole homologue via an intramolecular Wittig reaction between an imide and a phosphorus ylid moiety.

Thus, (2-phthalimidobenzyl)triphenylphosphonium bromide, 2a was treated with t-butyllithium in refluxing tetrahydrofuran to yield 6H-isoindolo[2,1-a]indol-6-one, 3a, in 82% yield (equation 1) (Table 1). The amido group of 3a was reduced quantitatively to the parent ring system, 6H-isoindolo[2,1-a]indole, with lithium aluminum hydride. Compounds 3b-d were prepared similarly. An attempt to synthesize 3a by the Horner-Emmons variant of the Wittig reaction using dimethyl 2-phthalimidobenzylphosphonate gave 3a in only 25% yield under the same conditions.

Table 1			
Compound	Y	Yield, % [a,b]	Mp (°C)
3a	Q	82	152-153 [c]
3 b	-C ₂ H ₄ -	78	151-153 [d]
3c	cis C	31	88-89
3d	-C ₃ H ₆ -	88	79-81

[a] Yield of isolated product. [b] C, H analysis were acceptable (\pm 0.4%). [c] Lit [6] mp 153-154.5°. [d] Lit [7] mp 153-154°.

Synthesis of 2a was achieved by way of the following sequence: 2-toluidine was condensed with phthalic anhydr-

ide to yield N-(2-tolyl)phthalimide. Treatment of the imide with elemental bromine or N-bromosuccinimide gave N-[2-(bromomethyl)phenyl]phthalimide. Refluxing of this compound with triphenylphosphine gave the corresponding phosphonium salt 2a in excellent yield. Compounds 2b-d were prepared by similar reaction sequences. (2-Maleimidobenzyl)triphenylphosphonium bromide could not be prepared because triphenylphosphine adds to the double bond of maleimides [7].

Work focusing on the appropriate substitution of 3b to yield compounds that more closely resemble the mitomycins is under way in this laboratory.

A General Procedure.

N-(2-Tolyl)phthalimide.

2-Toluidine and phthalic anhydride (1 eq) were heated to 160° for 3 hours without solvent. Upon cooling, the solid was washed several times with hot ethanol, yield 86%, mp $184{\text -}185^\circ$ from benzene (lit [8] mp 180°).

N-[2-(Bromomethyl)phenyl]phthalimide.

N-(2-tolyl)phthalimide was dissolved in refluxing carbon tetrachloride under a nitrogen atmosphere in a pyrex flask. Bromine (1.2 eq) was added dropwise while the reaction mixture was irradiated with a Hanovia ultraviolet quartz lamp (140 watts) until the color was discharged, yield 66%, mp 179-181° (carbon tetrachloride).

(2-Phthalimidobenzyl)triphenylphosphonium Bromide (2a).

A chloroform solution of N-[2-(bromomethyl)phenylphthalimide and triphenylphosphine (1.1 eq) was refluxed overnight. The volume was reduced, ethyl ether added, and the resulting precipitate was collected, yield 86%, mp 270-274° dec (ethanol).

6H-Isoindolo[2,1-a]indol-6-one (3a).

t-Butyllithium (1.1 eq) was added to a THF solution of (2-phthalimidobenzyl)triphenylphosphonium bromide under a nitrogen atmosphere and the reaction mixture was heated to reflux for 12 hours. The product was separated by liquid chromatography (silica gel-chloroform), yield 82%, yellow plates, mp 152-153° (ethanol); 'H-nmr (deuteriochloroform): 6.55 (S, 1H), 7.1-8.0 (m, 8H); ms: m/e 219.

Anal. Calcd. for C₁₅H₉NO: C, 82.17; H, 4.14. Found: C, 81.98; H, 4.17.

1,2-Dihydro-3H-pyrrolo[1,2-a]indol-3-one (3b).

This compound was obtained in a yield of 78%, colorless needles, mp 151-153° (methanol); 'H-nmr (deuteriochloroform): 3.02 (S, 4H), 6.10 (S, 1H), 7.1-7.65 (m, 3H), 7.90-8.1 (m, 1H); ms: m/e 171.

Anal. Calcd. for C₁₁H₉NO: C, 77.17; H, 5.30. Found: C, 76.96; H, 5.31.

6a,7,8,9,10,10a-Hexahydro-6*H*-isoindolo[2,1-a]indol-6-one (3c).

This compound was obtained in a yield of 31%, yellow crystals, mp 88-89° (methanol); 'H-nmr (deuteriochloroform): 1.20-2.35 (m, 8H), 2.85-3.45 (m, 2H), 6.17 (S, 1H), 7.0-7.6 (m, 3H), 7.9-8.15 (m, 1H); ms: m/e 225.

Anal. Calcd. for $C_{15}H_{18}NO$: C, 79.97; H, 6.71. Found: C, 79.85; H, 6.65. Both cis and trans isomers are assumed to exist.

6,7,8,9-Tetrahydropyrido[1,2-a]indol-6-one (3d).

This compound was obtained in a yield of 88%, colorless plates, mp

79-81° (methanol); 'H-nmr (deuteriochloroform): 1.85 (m, 2H), 2.70 (m, 4H), 6.10 (S, 1H), 7.20 (m, 3H), 8.45 (m, 1H); ms: m/e 185.

Anal. Calcd. for C₁₂H₁₁NO: C, 77.81; H, 5.99. Found: C, 77.96; H, 6.00. Acknowledgements.

The authors are grateful to Dr. R. O. Bach for a gift of t-butyllithium by the Lithium Corporation of America, Bessemer City, NC. H. Z. acknowledges with thanks a NATO travel grant.

REFERENCES AND NOTES

- [1] Taken in part from Ph.D. thesis, M. D. Crenshaw, University of Cincinnati, 1984.
- [2] See a recent review by T. Kametani and K. Takahashi, Heterocycles, 9, 293 (1978).
 - [3] Y. Kishi, J. Nat. Prod., 42, 549 (1979).
- [4] S. Danishefsky, J. Regan and R. Doehner, J. Org. Chem., 45, 5255 (1981).
- [5] J. Dijkink, J. N. Zonjee, B. S. De Jong and W. N. Speckamp, Heterocycles, 20, 1255 (1983).
 - [6] Y. Kanaoka and K. Koyama, Tetrahedron Letters, 4517 (1972).
 - [7] R. W. Franck and J. Auerbach, J. Org. Chem., 36, 31 (1971).
 - [8] R. G. Gailey and H. Zimmer, Tetrahedron Letters, 2839 (1970).
- [9] A. Arcoria, H. Lumbroso and R. Passerini, Bull. Soc. Chim. France, 754 (1959).